1个回答
展开全部
z=xy^2+ysin^2(x+y)
∂z/∂x=y^2+2ysin(x+y)cos(x+y)=y^2+ysin(2x+2y)
∂z/∂y=2xy+sin^2(x+y)+2ysin(x+y)cos(x+y)=2xy+sin^2(x+y)+ysin(2x+2y)
∂²z/∂x²=2ycos(2x+2y)
∂²z/∂y²=2x+2sin(x+y)cos(x+y)+sin(2x+2y)+2ycos(2x+2y)
=2x+2sin(2x+2y)+2ycos(2x+2y)
∂²z/∂x∂y=2y+sin(2x+2y)+2ycos(2x+2y)
∂z/∂x=y^2+2ysin(x+y)cos(x+y)=y^2+ysin(2x+2y)
∂z/∂y=2xy+sin^2(x+y)+2ysin(x+y)cos(x+y)=2xy+sin^2(x+y)+ysin(2x+2y)
∂²z/∂x²=2ycos(2x+2y)
∂²z/∂y²=2x+2sin(x+y)cos(x+y)+sin(2x+2y)+2ycos(2x+2y)
=2x+2sin(2x+2y)+2ycos(2x+2y)
∂²z/∂x∂y=2y+sin(2x+2y)+2ycos(2x+2y)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |