一道高数题追加50分求助
1个回答
展开全部
(1)因为lim(x->∞)f(x)=+∞
所以根据极限定义,存在正数D,对所有|x|>D,有f(x)>2020
任取a∈(-∞,-D),b∈(D,+∞),因为f(0)<=0,且f(x)在R上连续
所以根据连续函数介值定理,存在ξ1∈(-∞,a)⊆(-∞,0),ξ2∈(b,+∞)⊆(0,+∞)
使得f(ξ1)=f(ξ2)=2020
证毕
(2)令F(x)=[2020-f(x)]*e^x,则F'(x)=[2020-f(x)-f'(x)]*e^x
因为F(x)在R上可导,且F(ξ1)=F(ξ2)=0
所以根据罗尔定理,存在ξ∈(ξ1,ξ2),使得F'(ξ)=0
[2020-f(ξ)-f'(ξ)]*e^ξ=0
f(ξ)+f'(ξ)=2020
证毕
所以根据极限定义,存在正数D,对所有|x|>D,有f(x)>2020
任取a∈(-∞,-D),b∈(D,+∞),因为f(0)<=0,且f(x)在R上连续
所以根据连续函数介值定理,存在ξ1∈(-∞,a)⊆(-∞,0),ξ2∈(b,+∞)⊆(0,+∞)
使得f(ξ1)=f(ξ2)=2020
证毕
(2)令F(x)=[2020-f(x)]*e^x,则F'(x)=[2020-f(x)-f'(x)]*e^x
因为F(x)在R上可导,且F(ξ1)=F(ξ2)=0
所以根据罗尔定理,存在ξ∈(ξ1,ξ2),使得F'(ξ)=0
[2020-f(ξ)-f'(ξ)]*e^ξ=0
f(ξ)+f'(ξ)=2020
证毕
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |