
卷积图解法积分中的式子哪里来的
分析数学中一种重要的运算。设f(x),g(x)是R1上的两个可积函数。
可以证明,关于几乎所有的x∈(-∞,∞),上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f*g)(x)。容易验证,(f*g)(x)=(g*f)(x),并且(f*g)(x)仍为可积函数。
积分
的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。比如说,路径积分是多元函数的积分。

2025-08-07 广告
卷积积分 分析数学中一种重要的运算。设f(x),g(x)是R1上的两个可积函数,作积分: 可以证明,关于几乎所有的x∈(-∞,∞),上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f*g)(x)。容易验证,(f*g)(x)=(g*f)(x),并且(f*g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。 卷积与傅里叶变换有着密切的关系。以(x),(x)表示L1(R)1中f和g的傅里叶变换,那么有如下的关系成立:(f*g)∧(x)=(x)·(x),即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换。这个关系,使傅里叶分析中许多问题的处理得到简化。 由卷积得到的函数(f*g)(x),一般要比f,g都光滑。特别当g为具有紧支集的光滑函数,f为局部可积时,它们的卷积(f*g)(x)也是光滑函数。利用这一性质,对于任意的可积函数,都可以简单地构造出一列逼近于f的光滑函数列fs(x),这种方法称为函数的光滑化或正则化。 卷积的概念还可以推广到数列、测度以及广义函数上去。 卷积积分的物理意义 在激励条件下,线性电路在t时刻的零状态响应=从激励函数开始作用的时刻(ξ=0) 到t时刻(ξ=t)的区间内,无穷多个强度不同的冲激响应的总和。 可见,冲激响应在卷积中占据核心地位。