5个回答
展开全部
∫dx/(x²+2)(x+1)]=(1/3)∫[-(x-1)/(x²+2)+1/(x+1)]dx
=(1/3)[∫-xdx/(x²+2)+∫dx/(x²+2)+∫dx/(x+1)]
=(1/3)[-(1/2)∫d(x²+2)/(x²+2)+∫dx/(x²+2)+∫dx/(x+1)]
=(1/3)[(-1/2)ln(x²+2)+(1/√2)arctan(x/√2)+ln∣x+1∣]+C
=-(1/6)ln(x²+2)+[(√2)/6]arctan(x/√2)+(1/3)ln∣x+1∣]+C;
=(1/3)[∫-xdx/(x²+2)+∫dx/(x²+2)+∫dx/(x+1)]
=(1/3)[-(1/2)∫d(x²+2)/(x²+2)+∫dx/(x²+2)+∫dx/(x+1)]
=(1/3)[(-1/2)ln(x²+2)+(1/√2)arctan(x/√2)+ln∣x+1∣]+C
=-(1/6)ln(x²+2)+[(√2)/6]arctan(x/√2)+(1/3)ln∣x+1∣]+C;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |