y=tan(x+y)的隐函数调y的二阶导数
1个回答
展开全部
两边对x求导:
y'=[sec(x+y)]^2*(1+y')
即y'=(sec(x+y))^2/[1-(sec(x+y))^2]
化简得:y'=-(sec(x+y))^2/(tan(x+y))^2=- [csc(x+y)]^2
两边再对x求导得:
y"=2csc(x+y)*csc(x+y)*ctg(x+y)*(1+y'),再代入y',得:
=2(csc(x+y))^2*ctg(x+y)*[1-(csc(x+y))^2]
=-2(csc(x+y))^2*(ctg(x+y))^2
=-2[csc(x+y)*ctg(x+y)]^2
y'=[sec(x+y)]^2*(1+y')
即y'=(sec(x+y))^2/[1-(sec(x+y))^2]
化简得:y'=-(sec(x+y))^2/(tan(x+y))^2=- [csc(x+y)]^2
两边再对x求导得:
y"=2csc(x+y)*csc(x+y)*ctg(x+y)*(1+y'),再代入y',得:
=2(csc(x+y))^2*ctg(x+y)*[1-(csc(x+y))^2]
=-2(csc(x+y))^2*(ctg(x+y))^2
=-2[csc(x+y)*ctg(x+y)]^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询