-1的n次方是收敛还是发散?为什么?
2个回答
展开全部
-1的n次方是发散的。因为n增大时(-1)^n无限次循环取1和-1,并不趋于某个确定的数,所以发散的。收敛与发散判断方法:当n无穷大时,判断Xn是否是常数,是常数则收敛,加减的时候,把高阶的无穷小直接舍去,乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来代。
收敛为一个经济学、数学名词,研究函数的一个重要工具,指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。
在数学分析中,与收敛相对的概念就是发散。发散级数指(按柯西意义下)不收敛的级数。
如果一个级数为收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。
收敛为一个经济学、数学名词,研究函数的一个重要工具,指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。
在数学分析中,与收敛相对的概念就是发散。发散级数指(按柯西意义下)不收敛的级数。
如果一个级数为收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询