sinx/x积分0到正无穷是什么?
1个回答
展开全部
sinx/x积分0到正无穷是I=∫∫ e^(-xy) ·sinxdxdy (x,y)∈D 其中D为x,y轴的正半轴和第一象限的集合。
对sinx泰勒展开,再除以x有:
sinx/x=1-x^2/3!+x^4/5!+…+(-1)^(m-1)x^(2m-2)/(2m-1)!+o(1)。
两边求积分有:
∫sinx/x·dx。
=[x/1-x^3/3·3!+x^5/5·5!+…+(-1)^(m-1)x^(2m-1)/(2m-1)(2m-1)!+o(1)]。
从0到无穷定积分:
则将0,x(x→00)(这里的x是一个很大的常数,可以任意取)代入上式右边并相减,通过计算机即可得到结果 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询