实数 、虚数、 复数是什么?
1、实数(realnumber)是有理数和无理数的总称。实数定义为与数轴上的实数,点相对应的数。
2、虚数。虚数是指实数以外的复数,其中实部为0的虚数称为纯虚数。
在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i²=-1。
数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
3、复数。形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
虚数符号:
1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。
通常,我们用符号C来表示复数集,用符号R来表示实数集。
实际意义:
虚数我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。在此时,一点P坐标为P (a,bi),将坐标乘上i即点绕圆心逆时针旋转90度。