(1+x)的n次方是多少?
1个回答
展开全部
(1+x)的n次方是:(x+1)^n=Cn0x^n+Cn1x^(n-1)(-1)^1+Cn2x^(n-2)(-1)^2+……+Cn(n-1)x(-1)^(n-1)+Cnn(-1)^n(x+1)^n。
设a为某数,n为正整数,a的n次方表示为aⁿ,表示n个a连乘所得之结果,如2⁴=2×2×2×2=16。次方的定义还可以扩展到0次方、负数次方、小数次方、无理数次方甚至是虚数次方。
泰勒展开式的重要性体现在以下五个方面:
1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。
2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。
3、泰勒级数可以用来近似计算函数的值,并估计误差。
4、证明不等式。
5、求待定式的极限。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询