两个矩阵相似有哪些性质?
展开全部
两个矩阵相似性质有:
1、反身性:任何矩阵都与它本身相似。
2、对称性:如果 A和 B相似,那么 B就和 A相似。
3、传递性:如果 A和 B相似, B和 C相似,那么 A也和 C相似。
如果 n阶矩阵 A类似于 B,则 A和 B的特征多项式是一样的,因此 A和 B的本征值是相同的。n阶矩阵 A和对角矩阵类似(A可对角化)的充要条件是 A具有 n个线性无关的特征向量。
矩阵之间的相似关系:
设K是L的一个子域, A和B是系数K中的矩阵,那么A和B在K上类似,只当它们在 L上相似。这一性质非常有用:在判定两个矩阵相似性的情况下,任意扩展该系数域到一个代数封闭域,然后求出若尔当标准形。若相似矩阵 A与 B之间的转换矩阵 P为置换矩阵,则称 A与 B “置换相似”。
若相似矩阵 A与 B之间的转换矩阵 P为酉矩阵,则称 A与 b “酉相似”。谱论证明了每一个正规矩阵都酉都与某些对角阵是相似的。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
如果Ax=λx,B=P^{-1}AP。那么Ax=PBP^{-1}x=λx,B(P^{-1}x)=λ(P^{-1}x)。n阶矩阵A与对角矩阵相似的充分必要条件为矩阵A有n个线性无关的特征向量。注: 定理的证明过程实际上已经给出了把方阵对角化的...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询