为什么f’(1)的导数是1
展开全部
设函数为y=f(x),一阶导数为y'=f'(x),则f'(1)表示在x=1处的导数值。所以f’(1)=1。当函数定义域和取值都在实数域中的时候,导数可以表示函数的曲线上的切线斜率。
函数在定义域中一点可导需要一定的条件。首先,要使函数f在一点可导,那么函数一定要在这一点处连续。换言之,函数若在某点可导,则必然在该点处连续。可导的函数一定连续,不连续的函数一定不可导。
求导
求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。
如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。数学中的名词,即对函数进行求导,用f'(x)表示。可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询