请问这道题的极限怎么求 求limx→0(tanx/x)^(1/x^2)
展开全部
y=(tanx/x)^(1/x^2)
lny=(1/x^2)ln(tanx/x)
lim[x-->0](1/x^2)ln(tanx/x)
=lim[x-->0](lntanx-lnx)/x^2
=lim[x-->0]sec^2(x)/tanx-1/x)/(2x)
=lim[x-->0]1/(sinxcosx)-1/x)/(2x)
=lim[x-->0](x-sinx)/(2x^2sinx)
=lim[x-->0](x-x-x^3/6+o(x^3))/(2x^3)
=1/3
∴lim[x→0](tanx/x)^(1/x^2)=e^(1/3)
lny=(1/x^2)ln(tanx/x)
lim[x-->0](1/x^2)ln(tanx/x)
=lim[x-->0](lntanx-lnx)/x^2
=lim[x-->0]sec^2(x)/tanx-1/x)/(2x)
=lim[x-->0]1/(sinxcosx)-1/x)/(2x)
=lim[x-->0](x-sinx)/(2x^2sinx)
=lim[x-->0](x-x-x^3/6+o(x^3))/(2x^3)
=1/3
∴lim[x→0](tanx/x)^(1/x^2)=e^(1/3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询