离散数学第一章---集合(一)

 我来答
抛下思念17
2022-06-10 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6241
采纳率:99%
帮助的人:34.4万
展开全部
  集合是数学中的一个最基本的概念,就像公理一样,我们通常只是给予一种描述。
即:当把一些确定的、彼此不同的事物作为一个整体来考虑时,这个整体便称为一个集合。

集合中所包含的个体,称为元素。

这里的确定性是指元素只能包含或不包含于集合中,不存在模棱两可的状态,
互异性是指集合中的元素不相同,
无序性是指集合中元素的排列方式不影响集合的同异。

无序性是指元素的排列顺序不影响集合,不同排列顺序下集合仍然是这一个,但是,如果是有序数组,则会影响。如果有n个元素,则称为有序n元组。

互异性是指集合中的元素互不相同,但是,在实际情况下,会出现相同元素的情况,这时引入了多重集合,这在后面会讲到。

设集合A,集合A中元素的个数记作#A,即A的基数 。
根据集合的个数,将集合分为有限集和无限集,
空集是指集合中没有元素的集合,现在一般认为空集是有限集,
有限集的定义,是指集合中的元素是有限的,更精确的定义是不可与其自身的 真子集 对等的非空集合,以及 空集 。

有限集个数的比较是简单的,直接比较个数的大小即可,
对于无限集合,可以采用元素的对应方式来获得,
例如正整数集和从0到1的开区间中所有数这两个集合,

首先,建立对应关系,
从2到正无穷,对应1/n,n是从2到正无穷的整数,显然1/n是在这个开区间内的,
而根据无理数的定义,无理数不可由分数表示,故任取一个无理数:根号二分之一,来对应1,
则开区间内仍有元素无法与正整数集中的元素匹配,故开区间(0,1)比正整数集的元素多。

列举法是用花括号弧将元素逐个列举出来,例如A={a,b,c},
而描述法,则是借用某种规则,将所有的元素限定对应,例如B={x|1<x<2}。

设集合A={x|1<x<5}, 则若元素a=3,b=6,则a在集合中而b不在,
可表示为a∈A, b∉A。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式