已知a,b,c,d为实数,a+b=1,c+d=1且ac+bd>1,求证:a,b,c,d中至少有一个负数

 我来答
华源网络
2022-06-25 · TA获得超过5598个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:148万
展开全部
假设abcd没有一个负数
又因为a+b=1.c+d=1
所以abcd都大于等于0小于等于1
则a=1-b,c=1-d
ac+bd=(1-b)(1-d)+bd=1-b-d+2bd>1
b(d-1)+d(b-1)>0
因为0≤d≤1,0≤b≤1
所以-1≤d-1≤0,-1≤b-1≤0
而b≥0,d≥0
所以b(d-1)≤0,d(b-1)≤0
他们相加=0
所以只有b(d-1)=d(b-1)=0
若b=0,则由d(b-1)=0得到d=0
则由a+b=1.c+d=1
a=c=1
但这和ac+bd>1矛盾
所以a,b,c,d中至少有一个负数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式