设∑是球面x2+y2+z2=4的外侧,则对坐标的曲面积分∫∫x^2dxdy=

 我来答
世纪网络17
2022-06-29 · TA获得超过5960个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:144万
展开全部
D是∑在xOy平面的投影,方程为x^2+y^2=4
∫∫[∑] x^2dxdy=∫∫[D] x^2dxdy
由轮换对称性有∫∫[D] x^2dxdy=∫∫[D] y^2dxdy
所以∫∫[D] x^2dxdy=(1/2)∫∫[D] x^2+y^2dxdy=(1/2)∫[0->2π]∫[0->2] r^3 drdθ=4π
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式