d/dx∫sin(x-t)^2dt 积分上限x下限0
1个回答
展开全部
先求∫(0->x)sin(x-t)^2dt
=∫(0->x)(1-cos(2x-2t)/2 dt
=1/2∫(0->x)dt-1/2∫(0->x)cos(2x-2t)dt
=x/2+1/4∫(0->x)cos(2x-2t)d(2x-2t)
=x/2+1/4sin(2x-2t)|(0->x)
=x/2+1/4(sin(2x-2x)-sin(2x-2*0)
=x/2+sin2x/4
所以
d/dx∫(0->x)sin(x-t)^2dt
=d(x/2+sin2x/4)/dx
=1/2+1/4*cos2x*2
=1/2+cos2x /2
=∫(0->x)(1-cos(2x-2t)/2 dt
=1/2∫(0->x)dt-1/2∫(0->x)cos(2x-2t)dt
=x/2+1/4∫(0->x)cos(2x-2t)d(2x-2t)
=x/2+1/4sin(2x-2t)|(0->x)
=x/2+1/4(sin(2x-2x)-sin(2x-2*0)
=x/2+sin2x/4
所以
d/dx∫(0->x)sin(x-t)^2dt
=d(x/2+sin2x/4)/dx
=1/2+1/4*cos2x*2
=1/2+cos2x /2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询