连续与可导的关系

 我来答
刺任芹O
2022-11-16 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:8879万
展开全部

函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。

关于函数的可导导数和连续的关系:

1、连续的函数不一定可导。

2、可导的函数是连续的函数。

3、越是高阶可导函数曲线越是光滑。

4、存在处处连续但处处不可导的函数。

左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。

扩展资料

单侧连续的几何意义:

通俗地说,函数在点x0左连续,该点x0对应函数曲线上的点M(x0,f(x0)),同时点M与左边紧邻的函数曲线天衣无缝地连在一起,没有任何间隔。同理,理解右连续。

如函数y=x在区间[-1,1]在点x=-1右连续,在x=1左连续。

又如函数y=|x|/x在x=0处即不左连续也不右连续。

参考资料来源:百度百科-可导

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式