y=tanx的导数
1个回答
展开全部
y=tanx的导数是y=(secx)^2
推导过程如下:
tanx=sinx/cosx
[sinx/cosx]=[(sinx)cosx-sinx(cosx)]/(cosx)^2
=[cosx*cosx+sinx*sinx]/(cosx)^2
=1/(cosx)^2
=(secx)^2
推导过程如下:
tanx=sinx/cosx
[sinx/cosx]=[(sinx)cosx-sinx(cosx)]/(cosx)^2
=[cosx*cosx+sinx*sinx]/(cosx)^2
=1/(cosx)^2
=(secx)^2
扩展资料
基本初等函数导数公式主要有以下
y=f(x)=c (c为常数),则f'(x)=0
f(x)=x^zn (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方)
f(x)=sinx f'(x)=cosx
f(x)=cosx f'(x)=-sinx
f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x f'(x)=e^x
f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)
f(x)=lnx f'(x)=1/x (x>0)
f(x)=tanx f'(x)=1/cos^2 x
f(x)=cotx f'(x)=- 1/sin^2 x
导数运算法则如下
(f(x)+/-g(x))'=f'(x)+/- g'(x)
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询