数列收敛和级数收敛有什么区别和联系

 我来答
妖感肉灵10
2022-11-16 · TA获得超过6.3万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.3亿
展开全部

数列收敛和级数收敛区别:

1、项数不同:数列收敛是N项是有限项之和收敛,而级数是无穷项之和收敛。

2、意义不同:数列收敛是指Un的极限LimUn存在;级数收敛是指Sn的极限LimSn存在。

联系:级数是指将数列的项依次用加号连接起来的函数。级数的每一项数列都收敛那么该级数收敛。

收敛级数:收敛级数(convergent series)是柯西于1821年引进的,它是指部分和序列的极限存在的级数。收敛级数分条件收敛级数和绝对收敛级数两大类,其性质与有限和(有限项相加)相比有本质的差别,例如交换律和结合律对它不一定成立。

收敛数列:设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。数列收敛等价于数列存在唯一极限。

扩展资料

收敛级数的基本性质主要有:级数的每一项同乘一个不为零的常数后,它的收敛性不变;两个收敛级数逐项相加或逐项相减之后仍为收敛级数;在级数前面加上有限项,不会改变级数的收敛性;原级数收敛,对此级数的项任意加括号后所得的级数依然收敛;级数收敛的必要条件为级数通项的极限为0。

收敛数列的基本性质主要有:唯一性、有界性、保号性。

参考资料来源:百度百科-收敛级数

参考资料来源:百度百科-收敛数列

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式