直线与椭圆有什么关系?

 我来答
白雪忘冬
高粉答主

2022-12-15 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376638

向TA提问 私信TA
展开全部

设直线y=kx+b

代入椭圆的方程可得:x²/a²+ (kx+b)²/b²=1,设两交点为A、B,点A为(x1,y1),点B为(x2,y2),则有AB=√ [(x1-x2)²+(y1-y2)²],把y1=kx1+b.y2=kx2+b分别代入。

则有:AB=√ [(x1-x2)²+(kx1-kx2)²=√ [(x1-x2)²+k²(x1-x2)²]=│x1-x2│ √ (1+k²) 同理可以证明:弦长=│y1-y2│√[(1/k²)+1]

直线和椭圆的交点(默认一定存在交点,且直线 A!=0,B!=0;)

直线:Ax+By+C=0;

椭圆:x^2/a^2+y^2/b^2=1;

求直线和椭圆的交点:

(B^2+(A^2*a^2)/b^2)*y^2 + 2*B*C*y+C^2-A^2*a^2=0;

令m=(B^2+(A^2*a^2)/b^2);

n=2*B*C;

p=C^2-A^2*a^2;

令m1=(A^2+(B^2*b^2)/a^2);

n1=2*AC;

p1=C^2-B^2*b^2;

得到y=(-n±√(b^2-4*m*p))/2*m;

当y=(-n-√(b^2-4*m*p))/2*m;x=(-n1-√(b1^2-4*m1*p1))/2*m1

当y=(-n+√(b^2-4*m*p))/2*m;x=(-n1+√(b1^2-4*m1*p1))/2*m1

扩展资料

1、在处理直线与椭圆的位置关系问题时,常用设而不求法,即常将圆锥曲线与直线联立,消去y(或x)化为关于x(或y)的一元二次方程。

设出直线与圆锥曲线的交点坐标,则交点的横(纵)坐标即为上述一元二次方程的解,利用根与系数关系,将x1+x2,x1x2表示出来,注意判别式大于零不能丢。

再通过配凑将其化为关于x1+x2与x1x2的式子,将x1+x2,x1x2代入再用有关方法取处理,注意用向量法处理共线问题、垂直问题及平行问题。

2、在处理直线与椭圆位置关系问题时,首先确定直线的斜率,若不能确定,则需要分成直线斜率存在与不存在两种情况讨论,也可以将直线方程设为x=my+n,避免分类讨论。

参考资料来源:百度百科-椭圆弦长公式

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式