limx→1 (3√x-1)/(√x-1)求极限
展开全部
解法一:原式=lim(x->1){[(x^(1/3)-1)(x^(2/3)+x^(1/3)+1)(√x+1)]/[(√x-1)(√x+1)(x^(2/3)+x^(1/3)+1)]}
=lim(x->1){[(x-1)(√x+1)]/[(x-1)(x^(2/3)+x^(1/3)+1)]}
=lim(x->1)[(√x+1)/(x^(2/3)+x^(1/3)+1)]
=(1+1)/(1+1+1)
=2/3;
解法二:原式=lim(x->1){[(1/3)x^(-2/3)]/[(1/2)x^(-1/2)]} (0/0型极限,应用罗比达法则)
=(1/3)/(1/2)
=2/3.
=lim(x->1){[(x-1)(√x+1)]/[(x-1)(x^(2/3)+x^(1/3)+1)]}
=lim(x->1)[(√x+1)/(x^(2/3)+x^(1/3)+1)]
=(1+1)/(1+1+1)
=2/3;
解法二:原式=lim(x->1){[(1/3)x^(-2/3)]/[(1/2)x^(-1/2)]} (0/0型极限,应用罗比达法则)
=(1/3)/(1/2)
=2/3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询