limx→1 (3√x-1)/(√x-1)求极限
展开全部
解法一:原式=lim(x->1){[(x^(1/告团闷3)-1)(x^(2/3)+x^(1/3)+1)(√x+1)]/或兆[(√x-1)(√x+1)(x^(2/3)+x^(1/3)+1)]}
=lim(x->1){[(x-1)(√x+1)]/[(x-1)(x^(2/3)+x^(1/3)+1)]}
=lim(x->1)[(√袜弯x+1)/(x^(2/3)+x^(1/3)+1)]
=(1+1)/(1+1+1)
=2/3;
解法二:原式=lim(x->1){[(1/3)x^(-2/3)]/[(1/2)x^(-1/2)]} (0/0型极限,应用罗比达法则)
=(1/3)/(1/2)
=2/3.
=lim(x->1){[(x-1)(√x+1)]/[(x-1)(x^(2/3)+x^(1/3)+1)]}
=lim(x->1)[(√袜弯x+1)/(x^(2/3)+x^(1/3)+1)]
=(1+1)/(1+1+1)
=2/3;
解法二:原式=lim(x->1){[(1/3)x^(-2/3)]/[(1/2)x^(-1/2)]} (0/0型极限,应用罗比达法则)
=(1/3)/(1/2)
=2/3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
网易云信
2023-12-06 广告
2023-12-06 广告
UIkit是一款轻量级、模块化、基于jQuery的UI框架,它提供了大量易于使用的UI组件,包括按钮、表单、表格、对话框、通知等等。UIkit的设计理念是尽可能地简洁和灵活,开发者可以根据自己的需求自由地选择需要的组件和样式,从而快速构建出...
点击进入详情页
本回答由网易云信提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询