为什么sin(根号x)趋于无穷大时不存在极限?
1个回答
展开全部
当x趋近于无穷时可能使得x=2kπ+π/2,当k取无穷大时,x也为无穷大。此时,f(x)=1;
当x趋近于无穷时可能使得x=2kπ,当k取无穷大时,x也为无穷大。此时,f(x)=0;
根据极限的唯一性,上述情况显然不唯一,所以极限不存在。
若x趋近于正无穷,这根号x也趋近于正无穷,
由sinX中,当X趋于无穷时,SINX无穷大,无极限值。
所以sin根号x中,当根号X趋于无穷大时,sin根号x无穷大,无极限值。
这里你把根号X,看成Y,思路就比较明显,不混淆
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询