(2012?吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.(1)求证:
1个回答
展开全部
1、证明:∵四边形ABDE是平行四边形;
(1)∴AB∥DE,AB=DE;
(2)∴∠B=∠EDC;
(3)又∵AB=AC;
(4)∴AC=DE,∠B=∠ACB;
(5)∴∠EDC=∠ACD;
(6)∵在△ADC和△ECD中(AC=ED,∠ACD=∠EDC,DC=CD);
(7)∴△ADC≌△ECD(SAS);
2、∵四边形ABDE是平行四边形(已知);
(1)∴BD∥AE,BD=AE(平行四边形的对边平行且相等);
(2)∴AE∥CD;
(3)又∵BD=CD;
(4)∴AE=CD;
(5)∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);
(6)在△ABC中,AB=AC,BD=CD;
(7)∴AD⊥BC;
(8)∴∠ADC=90°;
(9)∴▱ADCE是矩形。
扩展资料:
试题分析:
1、根据平行四边形的性质、等腰三角形的性质,利用全等三角形的判定定理SAS可以证得△ADC≌△ECD;
2、利用等腰三角形的“三合一”性质推知AD⊥BC,即∠ADC=90°;由平行四边形的判定定理(对边平行且相等是四边形是平行四边形)证明四边形ADCE是平行四边形,所以有一个角是直角的平行四边形是矩形。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询