如图,平行四边形abcd中,ab=4,bc=3,∠bad=120,e为bc边上的一个动点(不与B重
1个回答
展开全部
(1)证明:∵EF⊥AB,AB∥DC,
∴EF⊥DG.
∴∠BFG=∠G=90°.
又∵∠BEF=∠CEG,
∴△BEF∽△CEG;
(2)由(1)DG为△DEF中EF边上的高,
设BE=x,
在Rt△BFE中,∠B=60°,
EF=BEsinB= √3/2x.
在Rt△CEG中,CE=3-x,
GC=(3-x)cos60°=3-x/2,
∴ DG=DC+GC=11-x/2,
∴ S=1/2EF•DG=-√3/8x²+11√3/8x(0<x≤3);
(3)∵ a=-√3/8<0,对称轴 x=11/2>3,
∴当0<x≤3时,S随x的增大而增大,
当x=3时,即E与C重合时,
Smax=3√3.
∴EF⊥DG.
∴∠BFG=∠G=90°.
又∵∠BEF=∠CEG,
∴△BEF∽△CEG;
(2)由(1)DG为△DEF中EF边上的高,
设BE=x,
在Rt△BFE中,∠B=60°,
EF=BEsinB= √3/2x.
在Rt△CEG中,CE=3-x,
GC=(3-x)cos60°=3-x/2,
∴ DG=DC+GC=11-x/2,
∴ S=1/2EF•DG=-√3/8x²+11√3/8x(0<x≤3);
(3)∵ a=-√3/8<0,对称轴 x=11/2>3,
∴当0<x≤3时,S随x的增大而增大,
当x=3时,即E与C重合时,
Smax=3√3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询