过圆x^2+y^2=4 内一点A(1,0)作圆的弦,求这些弦的中点M的轨迹方程
1个回答
展开全部
设弦AB坐标分别是:A(X1,Y1),B(X2,Y2),中点M(X,Y)
则有:X1+X2=2X,Y1+Y2=2Y
X1^2+Y1^2=4
X2^2+Y2^2=4
二式相减得:
(X1+X2)(X1-X2)+(Y1+Y2)(Y1-Y2)=0
(Y1-Y2)/(X1-X2)=-2X/2Y=-X/Y
即AB的斜率是:-X/Y
又K(AB)=K(MA)=(Y-0)/(X-1)
所以,-X/Y=Y/(X-1)
即方程是:Y^2=-X(X-1)
则有:X1+X2=2X,Y1+Y2=2Y
X1^2+Y1^2=4
X2^2+Y2^2=4
二式相减得:
(X1+X2)(X1-X2)+(Y1+Y2)(Y1-Y2)=0
(Y1-Y2)/(X1-X2)=-2X/2Y=-X/Y
即AB的斜率是:-X/Y
又K(AB)=K(MA)=(Y-0)/(X-1)
所以,-X/Y=Y/(X-1)
即方程是:Y^2=-X(X-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询