实对称矩阵相同特征值的特征向量相互正交吗
展开全部
实对称矩阵相同特征值的特征向量不一定相互正交。例如:n×n阶单位矩阵E是实对称矩阵,且任何n维向量都是E的特征向量,但不能说任何两个n维向量都是正交的,属于单位阵E的某个特征值的特征向量有的相互正交,也有的不相互正交。
实对称矩阵的主要性质:
1、实对称矩阵A的不同特征值对应的特征向量是正交的。
2、实对称矩阵A的特征值都是实数,特征向量都是实向量。
3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。
4、若λ具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λE-A)=n-k,其中E为单位矩阵。
扩展资料:
正交矩阵的相关性质
1、方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;
2、方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;
3、A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;
4、A的列向量组也是正交单位向量组;
5、正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。
参考资料来源:百度百科-实对称矩阵
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询