托勒密定理的证明

 我来答
刺任芹O
2022-11-16 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:8794万
展开全部

托勒密定理:圆内接四边形两条对角线的乘积等于两对对边乘积之和。

如下图所示,ABCD为圆内接四边形,则对角线AC与BD的乘积等于一对对边AB与CD的乘积加上另一对对边AD与BC的乘积,即AC·BD=AB·CD+AD·BC。

证明:

(1)如下图所示。不妨设∠ACB大于∠ACD(其实也无所谓,见下图图2,先不用管它)。于是,在∠ACB内作一个以点C为顶点、以CB为一边的∠BCE,使∠BCE=∠ACD(图(1)中的红色角)。

又由于∠CAD=∠CBE(同弧同侧的圆周角相等),所以三角形ACD与BCE相似。于是有AD : BE = AC : BC,即AD·BC=AC·BE(称为1式)。

(2)同理,如上图图(2)所示,三角形CDE与ABC相似。从而有CD : AC = DE : AB,即AB·CD=AC·DE(称为2式)。

(3)1式加上2式,即得AD·BC+AB·CD=AC·(BE+DE)=AC·BD。即

AC·BD=AB·CD+AD·BC证毕。

扩展资料

推广

托勒密不等式:凸四边形的两组对边乘积和不小于其对角线的乘积,取等号当且仅当共圆或共线。

简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模,

得不等式AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD

推论

1、任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号。

2、托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆。

参考资料来源:百度百科-托勒密定理

茹翊神谕者

2023-03-27 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1582万
展开全部

简单分析一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式