求由方程sin(xy)+In(y-x)=X所确定的隐函数y在x=0处的导数
1个回答
展开全部
sin(xy)+In(y-x)=x
两边同时对x求导得
cos(xy)·(xy) '+1/(y-x)·(y-x) '=1
cos(xy)·(y+xy ')+1/(y-x)·(y '-1)=1 ①
当x=0时,sin0+lny=0,得y=1
把x=0,y=1代入①得
cos0·1+1·(y '-1)=1
解得y '=1
答案:隐函数y在x=0处的导数y '=1
两边同时对x求导得
cos(xy)·(xy) '+1/(y-x)·(y-x) '=1
cos(xy)·(y+xy ')+1/(y-x)·(y '-1)=1 ①
当x=0时,sin0+lny=0,得y=1
把x=0,y=1代入①得
cos0·1+1·(y '-1)=1
解得y '=1
答案:隐函数y在x=0处的导数y '=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
泰科博思
2024-12-27 广告
2024-12-27 广告
CASTEP是一款基于第一性原理计算方法的材料模拟软件,其优势包括:1.高精度。CASTEP使用密度泛函理论(DFT)进行第一性原理计算。这种基于波函数的方法不依赖于实验数据,可以获得非常高的准确性。2.广泛适用性。CASTEP适用于多种材...
点击进入详情页
本回答由泰科博思提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询