可微一定可导吗?

 我来答
IT168
2022-12-08 · 百度认证:IT168官方账号,优质数码领域创作者
IT168
IT168是中国最大的个人和企业IT产品选购、互动网站,每日提供最新的IT产品报价、促销行情、手机、平板、笔记本、相机和企业等50个频道提供最专业的产品选购和使用建议。
向TA提问
展开全部

是的,可微一定可导。但是可导不一定可微。

1、可导的充要条件:

左导数和右导数都存在并且相等。

2、可微:

(1)必要条件

若函数在某点可微分,则函数在该点必连续;

若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

(2)充分条件

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

扩展资料:

微分

早在希腊时期,人类已经开始讨论「无穷」、「极限」以及「无穷分割」等概念。这些都是微积分的中心思想;

虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论证和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步。

例如公元前五世纪,希腊的德谟克利特(Democritus)提出原子论:他认为宇宙万物是由极细的原子构成。在中国,《庄子.天下篇》中所言的「一尺之捶,日取其半,万世不竭」,亦指零是无穷小量。这些都是最早期人类对无穷、极限等概念的原始的描述。

其他关于无穷、极限的论述,还包括芝诺(Zeno)几个著名的悖论:

其中一个悖论说一个人永远都追不上一只乌龟,因为当那人追到乌龟的出发点时,乌龟已经向前爬行了一小段路,当他再追完这一小段,乌龟又已经再向前爬行了一小段路。芝诺说这样一追一赶的永远重覆下去,任何人都总追不上一只最慢的乌龟。

当然,从现代的观点看,芝诺说的实在荒谬不过;他混淆了「无限」和「无限可分」的概念。人追乌龟经过的那段路纵然无限可分,其长度却是有限的;所以人仍然可以以有限的时间,走完这一段路。

然而这些荒谬的论述,开启了人类对无穷、极限等概念的探讨,对后世发展微积分有深远的历史意味。

另外值得一提的是,希腊时代的阿基米德(Archimedes)已经懂得用无穷分割的方法正确地计算一些面积,这跟现代积分的观念已经很相似。

由此可见,在历史上,积分观念的形成比微分还要早。这跟课程上往往先讨论微分再讨论积分刚刚相反。

参考资料来源:百度百科-可微

参考资料来源:中国知网-多元函数可微、可导、连续之间的关系

  • 官方服务
    • 官方网站
    • 官方网站
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式