在正方形ABCD中,AD=6,E是CD中点,M是AE上的一点,MF⊥AE,交AB的延长线于F,连接EF交BC于点P...
在正方形ABCD中,AD=6,E是CD中点,M是AE上的一点,MF⊥AE,交AB的延长线于F,连接EF交BC于点P(1)设角AFM=α,求sinα的值.(2)若PC=BP...
在正方形ABCD中,AD=6,E是CD中点,M是AE上的一点,MF⊥AE,交AB的延长线于F,连接EF交BC于点P (1)设角AFM=α,求sinα的值.(2)若PC=BP,设EFM=β,求cotβ的值。
(根据题目图可以画出来,第二小问要过程) 展开
(根据题目图可以画出来,第二小问要过程) 展开
展开全部
解:(1)∵F是正方形ABCD边AB的延长线上的点,且MF⊥AE
∴△AFM是直角三角形,则α=∠AFM=90°-∠FAM
∵由题意可知∠DAM=90°-∠FAM
∴α=∠DAM
∵AD=6,E是CD中点
∴DE=3 ==>AE=√(AD²+DE²)=3√5
故 sinα=DE/AE=1/√5。
(2)在直角△BFP与直角△CEP中,
∵∠CEP=α+β (平行线的内错角相等)
PC=BP=3
∴直角△BFP≌直角△CEP
∴BF=CE (全等三角形对应边相等)
∵CE=3 (E是CD中点)
∴BF=CE=3
∴△BPF是等腰直角三角形
∴α+β=∠BFP=45°
∴β=45°-α
∵cosα=√(1-sin²α)=2/√5
∴cotβ=cot(45°-α)
=cos(45°-α)/sin(45°-α)
=(cos45°cosα+sin45°sinα)/(sin45°cosα-cos45°sinα)
=(cosα+sinα)/(cosα-sinα)
=(2/√5+1/√5)/(2/√5-1/√5)
=3。
∴△AFM是直角三角形,则α=∠AFM=90°-∠FAM
∵由题意可知∠DAM=90°-∠FAM
∴α=∠DAM
∵AD=6,E是CD中点
∴DE=3 ==>AE=√(AD²+DE²)=3√5
故 sinα=DE/AE=1/√5。
(2)在直角△BFP与直角△CEP中,
∵∠CEP=α+β (平行线的内错角相等)
PC=BP=3
∴直角△BFP≌直角△CEP
∴BF=CE (全等三角形对应边相等)
∵CE=3 (E是CD中点)
∴BF=CE=3
∴△BPF是等腰直角三角形
∴α+β=∠BFP=45°
∴β=45°-α
∵cosα=√(1-sin²α)=2/√5
∴cotβ=cot(45°-α)
=cos(45°-α)/sin(45°-α)
=(cos45°cosα+sin45°sinα)/(sin45°cosα-cos45°sinα)
=(cosα+sinα)/(cosα-sinα)
=(2/√5+1/√5)/(2/√5-1/√5)
=3。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询