随机变量X和Y是互相独立的充分和必要条件各是什么?
相互独立的充要条件是协方差为0,同时相关系数为0。根据充分条件和必要条件的定义:若条件要求包含在“协方差为0,同时相关系数为0”内,则其为相互独立的必要条件;若“协方差为0,同时相关系数为0”包含在条件要求内,则其为相互独立的充分条件。否则,为既不充分又不必要条件。
若随机变量X与Y的联合分布是二维正态分布,则X与Y独立的充要条件是X与Y不相关。
对任意分布,若随机变量X与Y独立, 则X与Y不相关,即相关系数ρ=0.反之不真.
但当随机变量X与Y的联合分布是二维正态分布时,若X与Y不相关, 即相关系数ρ=0, 可以得到联合分布密度函数是两个边缘密度函数的乘积,所以X与Y独立。
简单地说,随机变量X,Y不相关不能保证X,Y相互独立,反之则可以。
扩展资料:
在概率统计理论中,指随机过程中,任何时刻的取值都为随机变量,如果这些随机变量服从同一分布,并且互相独立,那么这些随机变量是独立同分布。
如果随机变量X1和X2独立,是指X1的取值不影响X2的取值,X2的取值也不影响X1的取值且随机变量X1和X2服从同一分布,这意味着X1和X2具有相同的分布形状和相同的分布参数。
对离散随机变量具有相同的分布律,对连续随机变量具有相同的概率密度函数,有着相同的分布函数,相同的期望、方差。如实验条件保持不变,一系列的抛硬币的正反面结果是独立同分布。