243÷7的余数是多少
展开全部
243÷7=34……5
【扩展资料】
在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):
(1)余数和除数的差的绝对值要小于除数的绝对值(适用于实数域);
(2)被除数=除数×商+余数;
除数=(被除数-余数)÷商;
商=(被除数-余数)÷除数;
余数=被除数-除数×商。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b的和除以c的余数(a、b两数除以c在没有余数的情况下除外),等于a,b分别除以c的余数之和(或这个和除以c的余数)。例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于。注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于。注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都可以推广到多个自然数的情形。
【扩展资料】
在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):
(1)余数和除数的差的绝对值要小于除数的绝对值(适用于实数域);
(2)被除数=除数×商+余数;
除数=(被除数-余数)÷商;
商=(被除数-余数)÷除数;
余数=被除数-除数×商。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b的和除以c的余数(a、b两数除以c在没有余数的情况下除外),等于a,b分别除以c的余数之和(或这个和除以c的余数)。例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于。注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于。注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都可以推广到多个自然数的情形。
灵德
2024-11-19 广告
2024-11-19 广告
由化工方面的博士、教授和企业的高级技术人员与管理人员创建的高科技化工企业。主要从事下列产品的开发、生产和相关的技术服务:▼高纯电子化学品(主要为高纯季铵碱 )▼季铵碱系列▼季铵盐系列▼季膦化合物系列▼相转移催化剂(PTC)▼均苯四甲酸 (P...
点击进入详情页
本回答由灵德提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询