求极限lim(x→0)][ln(1+2x^2)]/(1-cosx),急需要作答,?

 我来答
舒适还明净的海鸥i
2022-10-07 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:70.5万
展开全部
这是一个0/0型的极限,可以采用洛必达法则.lim【x→0】[ln(1+2x²)]/(1-cosx)lim【x→0】[ln(1+2x²)]'/(1-cosx)'=lim【x→0】[4x/(1+2x²)]/(sinx)=lim【x→0】[4x/(sinx+2x²sinx)]=lim【x→0】[(4...,2,原式=lim(x→0)2x^2/(2sin^2(x/2)) (ln(1+x)~x)
=lim(x→0)x^2/(x/2)^2 (sinx~x)
=4,1,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式