求tan(π-乄)cos(2π-乄)sin(-乄+3π/2)/cos(-乄-π)sin(-π-乄)
展开全部
tan(π-x) = tan(x-π) = -tan(π-x)
cos(2π-x) = cos(x)
sin(-x+3π/2) = -cos(x)
cos(-x-π) = -cos(x+π) = -cos(x)
sin(-π-x) = -sin(x)
因此,tan(π-x)cos(2π-x)sin(-x+3π/2)/cos(-x-π)sin(-π-x) = -tan(x)cos(x)(-cos(x))(-sin(x)) = tan(x)sin(x)cos^2(x) = tan(x)(1-sin^2(x)) = tan(x)cos^2(x) = tan(x)(1-tan^2(x))/tan^2(x) = 1/tan(x)
综上,tan(π-x)cos(2π-x)sin(-x+3π/2)/cos(-x-π)sin(-π-x) = 1/tan(x)
cos(2π-x) = cos(x)
sin(-x+3π/2) = -cos(x)
cos(-x-π) = -cos(x+π) = -cos(x)
sin(-π-x) = -sin(x)
因此,tan(π-x)cos(2π-x)sin(-x+3π/2)/cos(-x-π)sin(-π-x) = -tan(x)cos(x)(-cos(x))(-sin(x)) = tan(x)sin(x)cos^2(x) = tan(x)(1-sin^2(x)) = tan(x)cos^2(x) = tan(x)(1-tan^2(x))/tan^2(x) = 1/tan(x)
综上,tan(π-x)cos(2π-x)sin(-x+3π/2)/cos(-x-π)sin(-π-x) = 1/tan(x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询