设随机变量x的概率密度函数为f(x),且f(x)=f(-x)
奉美媛裘绸
2020-02-06
·
TA获得超过3.6万个赞
知道大有可为答主
回答量:1.3万
采纳率:29%
帮助的人:648万
关注
因为f(x)是
随机变量x的
概率密度函数所以
∫f(x)d(x)│(x=-
∞
to
+∞)=1
又因为
f(x)=f(-x)
所以
∫f(x)d(x)│(x=-
a
to
0)=∫f(x)d(x)│(x=0
to
a
)
F(0)=∫f(x)d(x)│(x=-
∞
to
0)=∫f(x)d(x)│(x=0
to
+∞
)=(1/2)*∫f(x)d(x)│(x=-
∞
to
+∞)=1/2
F(-a)=∫f(x)d(x)│(x=-
∞
to
-a)=∫f(x)d(x)│(x=-
∞
to
0)-∫f(x)d(x)│(x=-
a
to
0)=1/2-∫f(x)d(x)│(x=0
to
a
)
收起
为你推荐: