已知空间四边形ABCD中,AO1⊥平面BCD,并且O1为△BCD垂心,BO2⊥平面ACD于O2

已知空间四边形ABCD中,AO1⊥平面BCD,并且O1为△BCD垂心,BO2⊥平面ACD于O2求证O2是△ACD的垂心... 已知空间四边形ABCD中,AO1⊥平面BCD,并且O1为△BCD垂心,BO2⊥平面ACD于O2
求证 O2是△ACD的垂心
展开
〖CHINA〗33d9
高赞答主

2010-12-14 · 你的赞同是对我最大的认可哦
知道大有可为答主
回答量:3万
采纳率:71%
帮助的人:2.1亿
展开全部
丿BUG ,你好:

证明:连结BO1,AO2,
∵AO1⊥平面BCD,O1为ΔBCD的垂心,
∴BO1⊥CD,由三垂线定理得AB⊥CD.
又BO2⊥平面ACD,由三垂线逆定理得AO2⊥CD.
同理连结DO1,CO2可证BC⊥AD,即CO2⊥AD.
∴O2是ΔACD垂心.
匿名用户
2010-12-26
展开全部
已知空间四边形ABCD中,AO1⊥平面BCD,并且O1为△BCD垂心,BO2⊥平面ACD于O2
求证 O2是△ACD的垂心丿BUG CO2可证BC⊥AD,即CO2⊥AD.
∴O2是ΔACD垂心
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式