如图,直线L1:y=x+1与直线L2:y=mx+n相交于点P(1,b)
如图,直线L1:y=x+1与直线L2:y=mx+n相交于点P(1,b)(1)求b的值(2)不解关于x,y的方程组y=x+1,y=mx+n),请你写出它的解。(3)直线L3...
如图,直线L1:y=x+1与直线L2:y=mx+n相交于点P(1,b)
(1)求b的值
(2)不解关于x,y的方程组y=x+1,y=mx+n),请你写出它的解。
(3)直线L3:y=nx=m是否也经过点P?请说明理由 展开
(1)求b的值
(2)不解关于x,y的方程组y=x+1,y=mx+n),请你写出它的解。
(3)直线L3:y=nx=m是否也经过点P?请说明理由 展开
8个回答
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
解:1)由题意得:x=1是,y=b。
把x=1带入l1:y=x+1,得:
y=1+1=2
∴b=2
2)∵l1与l2相交于点P(1,b)
又∵b=2
∴l1与l2相交于点(1,2)
所以{x=1
{y=2
3)直线l3:y=nx+m经过点P,理由如下:
把(1,2)【即点P(1,b)】代入直线l2:y=mx+n中,得:
2=1×m+n
2=m+n
再把(1,2)代入直线l3:y=nx+m中,得:
2=1×n+m
2=m+n
∵直线l2经过点P,
又∵m+n=2=m+n
∴直线l3经过点P
把x=1带入l1:y=x+1,得:
y=1+1=2
∴b=2
2)∵l1与l2相交于点P(1,b)
又∵b=2
∴l1与l2相交于点(1,2)
所以{x=1
{y=2
3)直线l3:y=nx+m经过点P,理由如下:
把(1,2)【即点P(1,b)】代入直线l2:y=mx+n中,得:
2=1×m+n
2=m+n
再把(1,2)代入直线l3:y=nx+m中,得:
2=1×n+m
2=m+n
∵直线l2经过点P,
又∵m+n=2=m+n
∴直线l3经过点P
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)把点P(1,b)代入直线L1:y=x+1 得:b=1+1=2
(2)由于直线L1:y=x+1与直线L2:y=mx+n相交于点P,由其意义可知,方程组的解为:x=1,y=2.
(3)把点P(1,2) 代入直线L2:y=mx+n 得: m+n=2 ,则 假设直线y=nx+m (ps:估计楼主写错了)经过点p,则有,把点P(1,2)代入得:m+n=2 符合 ,则直线y=nx+m 经过点P。
(2)由于直线L1:y=x+1与直线L2:y=mx+n相交于点P,由其意义可知,方程组的解为:x=1,y=2.
(3)把点P(1,2) 代入直线L2:y=mx+n 得: m+n=2 ,则 假设直线y=nx+m (ps:估计楼主写错了)经过点p,则有,把点P(1,2)代入得:m+n=2 符合 ,则直线y=nx+m 经过点P。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)把点P(1,b)代入直线L1:y=x+1 得:b=1+1=2
(2)由于直线L1:y=x+1与直线L2:y=mx+n相交于点P,由其意义可知,方程组的解为:x=1,y=2.
(3)把点P(1,2) 代入直线L2:y=mx+n 得: m+n=2 ,则 假设直线y=nx+m (ps:估计楼主写错了)经过点p,则有,把点P(1,2)代入得:m+n=2 符合 ,则直线y=nx+m 经过点P。
(2)由于直线L1:y=x+1与直线L2:y=mx+n相交于点P,由其意义可知,方程组的解为:x=1,y=2.
(3)把点P(1,2) 代入直线L2:y=mx+n 得: m+n=2 ,则 假设直线y=nx+m (ps:估计楼主写错了)经过点p,则有,把点P(1,2)代入得:m+n=2 符合 ,则直线y=nx+m 经过点P。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:1)由题意得:x=1是,y=b。
把x=1带入l1:y=x+1,得:
y=1+1=2
∴b=2
2)∵l1与l2相交于点P(1,b)
又∵b=2
∴l1与l2相交于点(1,2)
所以{x=1
{y=2
3)直线l3:y=nx+m经过点P,理由如下:
把(1,2)【即点P(1,b)】代入直线l2:y=mx+n中,得:
2=1×m+n
2=m+n
再把(1,2)代入直线l3:y=nx+m中,得:
2=1×n+m
2=m+n
∵直线l2经过点P,
又∵m+n=2=m+n
∴直线l3经过点P
把x=1带入l1:y=x+1,得:
y=1+1=2
∴b=2
2)∵l1与l2相交于点P(1,b)
又∵b=2
∴l1与l2相交于点(1,2)
所以{x=1
{y=2
3)直线l3:y=nx+m经过点P,理由如下:
把(1,2)【即点P(1,b)】代入直线l2:y=mx+n中,得:
2=1×m+n
2=m+n
再把(1,2)代入直线l3:y=nx+m中,得:
2=1×n+m
2=m+n
∵直线l2经过点P,
又∵m+n=2=m+n
∴直线l3经过点P
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询