做一元2次方程应用题有哪些技巧
3个回答
展开全部
利用一元二次方程的特性解方程
如:
1、方程的两根与方程中各数有如下关系:X1+X2= -b/a,X1*X2=c/a(也称韦达定理)
2、方程两根为X1,X2时,方程为:X²;-(X1+X2)X+X1X2=0
3、通过b²-4ac的值来判断一元二次方程有几个根
当b²-4ac<0时 x无实数根
当b²-4ac≥0有实数根
.当b²-4ac=0时 x有两个相同的实数根 即x1=x2
当b^2-4ac>0时 x有两个不相同的实数根
4、利用标准式ax^2+bx+c=0(a、b、c是实数a≠0)
配方式:a(x+b/2a)²=(b²-4ac)/4a
两根式:a(x-x1)(x-x2)=0
用配方法解一元二次方程 口诀
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
选择最简单的解法:
1、看是否可以直接开方解;
2、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法);
3、使用公式法求解;
4、最后再考虑配方法
如:
1、方程的两根与方程中各数有如下关系:X1+X2= -b/a,X1*X2=c/a(也称韦达定理)
2、方程两根为X1,X2时,方程为:X²;-(X1+X2)X+X1X2=0
3、通过b²-4ac的值来判断一元二次方程有几个根
当b²-4ac<0时 x无实数根
当b²-4ac≥0有实数根
.当b²-4ac=0时 x有两个相同的实数根 即x1=x2
当b^2-4ac>0时 x有两个不相同的实数根
4、利用标准式ax^2+bx+c=0(a、b、c是实数a≠0)
配方式:a(x+b/2a)²=(b²-4ac)/4a
两根式:a(x-x1)(x-x2)=0
用配方法解一元二次方程 口诀
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
选择最简单的解法:
1、看是否可以直接开方解;
2、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法);
3、使用公式法求解;
4、最后再考虑配方法
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
整定计算怎么样?这个问题不能一概而论,要根据您的具体情况进行分析。这里简单介绍一下整定计算的特点,供您参考。①整定计算要决定保护的配置与使用,它直接关系到确保系统安全和对重要用户连续供电的问题,同时又和电网的经济指标,运行调度,调试维护等多...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询