
展开全部
△BAC是Rt△,且B是直角点
所以以AC线段为轴,经过旋转后得到一个圆锥体,该圆锥体的底面半径是AB=5,侧母线是BC=13, 高是AC=12。
底面周长C=2×π×AB=2×3.14×5=31.4
求展开成扇形的圆心角θ: θ×2×π×BC/360=C
θ=360×C/(2×π×BC)
θ=360×31.4/(2×3.14×13)=138.46°
求展开的扇形面积:S=θ×π×BC^2/360=138.46×3.14*13^2/360=204
圆锥底面面积:s=π×AB^2=3.14×5×5=78.5
表面积 S+s=204+78.5=282.5
所以以AC线段为轴,经过旋转后得到一个圆锥体,该圆锥体的底面半径是AB=5,侧母线是BC=13, 高是AC=12。
底面周长C=2×π×AB=2×3.14×5=31.4
求展开成扇形的圆心角θ: θ×2×π×BC/360=C
θ=360×C/(2×π×BC)
θ=360×31.4/(2×3.14×13)=138.46°
求展开的扇形面积:S=θ×π×BC^2/360=138.46×3.14*13^2/360=204
圆锥底面面积:s=π×AB^2=3.14×5×5=78.5
表面积 S+s=204+78.5=282.5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询