如何用换元法求积分?

 我来答
Dilraba学长
高粉答主

2023-04-23 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411029

向TA提问 私信TA
展开全部

令u = tan(x / 2),dx = 2du / (1+u²)

sinx = 2u / (1+u²),cosx = (1 - u²) / (1 + u²)

∫ dx / (sinx + cosx)

= ∫ 2 / 【(1 + u²) * [2u / (1+u²) + (1 - u²) / (1 + u²)]】 du

= 2∫ du / (-u² + 2u + 1)

= 2∫ du / [2 - (u - 1)²]

= 2∫ dy / (2 - y²),y=u - 1

= (1 / 2√2)ln|(y + √2) / (y - √2)| + C

= (1 / 2√2)ln|(u - 1 + √2) / (y - 1 - √2)| + C

= (1 / 2√2)ln|[tan(x / 2) - 1 + √2] / [tan(x / 2) - 1 - √2)| + C

= √2arctanh【[tan(x / 2) - 1] / √2】+ C

扩展资料

第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:

1、 根式代换法,

2、 三角代换法。

在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。

链式法则是一种最有效的微分方法,自然也是最有效的积分方法。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式