莱布尼茨三角形规律

 我来答
努力孩子22
2023-07-24 · TA获得超过329个赞
知道大有可为答主
回答量:1.7万
采纳率:100%
帮助的人:245万
展开全部

莱布尼茨三角形规律介绍如下:

微积分 1666年,莱布尼茨写成“论组合术”(De ArtCombinatoria)一文,讨论了平方数序列0,1,4,9 16,…的性质,例如它的第一阶差为1,3,5,7,…,第二阶差则恒等于2,2,2,…等.他注意到,自然数列的第二阶差消失,平方序列的第三阶差消失。

同时他还发现,如果原来的序列是从0开始的,那么第一阶差之和就是序列的最后一项,如在平方序列中,前5项的第一阶差之和为 1+3+5 +7=16,即序列的第5项.他用X表示序列中项的次序,用Y表示这一项的值。

相关事迹:

1672年,莱布尼茨作为高级外交官被派往巴黎,在那里他遇到了一位荷兰科学家,名叫克里斯蒂安.惠更斯。那时莱布尼茨在数学上还是个初出茅庐的新手,惠更斯指导他研究的一个问题就是求三角形数的倒数和。

莱布尼茨用他超凡的数学观察力,非常巧妙地解决了惠更斯的挑战。首先,把等式两边都除以2,得到,每一项的分母都能表示为相邻自然数的积。

而两个连续自然数的倒数差,通分后分母就是两数之积,分子为两数之差正好为1。然后,莱布尼茨去掉括号,化简,既然S的一半等于1,那么S也就是三角形数的倒数和就等于2。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式