矩阵一定要正交相似吗?

 我来答
是你找到了我
高粉答主

2023-05-29 · 说的都是干货,快来关注
知道小有建树答主
回答量:916
采纳率:100%
帮助的人:43万
展开全部

正交相似是相似的一种情况。方阵不一定都可以正交相似。

在线性代数中,相似矩阵是指存在相似关系的矩阵。设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)AP=B则称矩阵A与B相似,记为A~B。

判断两个矩阵是否相似的辅助方法:

(1)判断特征值是否相等;

(2)判断行列式是否相等;

(3)判断迹是否相等;

(4)判断秩是否相等。

以上条件可以作为判断矩阵是否相似的必要条件,而非充分条件。

扩展资料:

正交矩阵的定理:

1、方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;

2、方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;

3、A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;

4、A的列向量组也是正交单位向量组。

5、正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式