概率论中P(X=0, Y=0)的意义是什么?

 我来答
教育达人小李
高粉答主

2023-06-27 · 每个回答都超有意思的
知道小有建树答主
回答量:2030
采纳率:100%
帮助的人:50.5万
展开全部

P(XY=0)=1,即X、Y都不是0的概率为0,P(X=1,Y=1)=P(X=-1,Y=1)=0,结合二维离散随机变量的条件分布律来做,X=-1条件下随机变量X的条件分布律之和为1。

即P(Y=1|X=-1)+P(Y=0|X=-1)=1,由乘法公式P(AB)=P(B|A)P(A)可知,因为P(X=-1,Y=1)=0,所P(Y=1|X=-1)=0,P(Y=0|X=-1)=1。

所以P(Y=0,X=-1)=P(Y=0|X=-1)P(X=-1)=P(X=-1)=1/4,同理得其他。最后剩下P(Y=0,X=0),因为1/4+1/2+1/4=1,或者说1-P(Y=不等0,X不等0),P(Y=0,X=0)=0。

扩展资料:

随机变量的表示方法:

例如掷一颗骰子出现的点数,电话交换台在一定时间内收到的呼叫次数,随机抽查的一个人的身高,悬浮在液体中的微粒沿某一方向的位移,等等,都是随机变量的实例。

一个随机试验的可能结果(称为基本事件)的全体组成一个基本空间Ω(见概率)。随机变量x是定义于Ω上的函数,即对每一基本事件ω∈Ω,有一数值x(ω)与之对应。

以掷一颗骰子的随机试验为例,它的所有可能结果见,共6个,分别记作ω1,ω2,ω3,ω4,ω5,ω6,这时,Ω={ω1,ω2,ω3,ω4,ω5,ω6},而出现的点数这个随机变量x,就是Ω上的函数x(ωk)=k,k=1,2,…,6。

参考资料来源:百度百科-随机变量

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式