如何判断等比级数的敛散性?

 我来答
我爱学习112
高粉答主

2023-06-24 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:156万
展开全部

等比级数敛散可以用比较判别法判别。

用比较判别法的技巧是:先判断级数一般项极限是否为零,不为零,则级数发散,若一般项极限为零,找与一般项同阶的无穷小,而且通常是P级数的一般项,从而由此P级数的敛散性确定原级数的敛散性。

收敛:

如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数。

调和级数的发散性被中世纪数学家奥里斯姆所证明。

一般的级数u1+u2+...+un+...,它的各项为任意级数,如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,则称级数Σun绝对收敛。

匿名用户
2023-06-25
展开全部
公比绝对值小于1就是收敛的,否则就发散
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式