1、求曲线+y=3x^2+2+区间[0,2]所围成图形的面积
😳问题 : 求曲线y=3x^2+2 区间[0,2]所围成图形的面积
👉定积分
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
👉定积分的例子
『例子一』 ∫(0->1) dx=[x]|(0->1) =1
『例子二』 ∫(0->1) cosx dx=[sinx]|(0->1) =sin1
『例子三』 ∫(0->1) x dx=(1/2)[x^2]|(0->1) =1/2
👉回答
利用定积分计算面积
曲线y=3x^2+2 区间[0,2]所围成图形的面积
曲线y=3x^2+2 区间[0,2]所围成图形的面积
=A
=∫(0->2) (3x^2 +2 ) dx
利用 ∫ x^n dx = [1/(n+1)]x^(n+1) + C
=[x^3 +2x]|(0->2)
=8+4
=12
得出结果
曲线y=3x^2+2 区间[0,2]所围成图形的面积 =12
😄: 曲线y=3x^2+2 区间[0,2]所围成图形的面积 =12