函数在某点可导,那导函数一定连续吗
5个回答
展开全部
不一定。根据定义,导数存在要左导数等于右导数,而导函数连续要导函数的左极限等于右极限。f′(x0)的左导数不一定等于f′(x)在x0初的左极限。举一个例子,f(x)=x²sin(1/x)
x≠0;
f(x)=0
x=0.
f′(0)=0,但f′(x)在x=0处的极限不存在,故导函数不连续
x≠0;
f(x)=0
x=0.
f′(0)=0,但f′(x)在x=0处的极限不存在,故导函数不连续
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你的这个问题过于笼统
既没有说定义域,也没有限制函数范围!
不过你的意思应该是“可导函数的导函数在原函数的可导定义域内一定连续吗?”
答案是肯定的。
一楼的回答肯定是错误的,因为x=0不在函数定义域内
二楼同样错误,斜率无穷大的点不存在,因为斜率垂直x轴的那个点就是他所说的斜率无穷大的点,这点明显不可取即不在定义域内!
如果你碰到给了函数表达式的题目,可用定义法证明!
如有不懂,hi我
既没有说定义域,也没有限制函数范围!
不过你的意思应该是“可导函数的导函数在原函数的可导定义域内一定连续吗?”
答案是肯定的。
一楼的回答肯定是错误的,因为x=0不在函数定义域内
二楼同样错误,斜率无穷大的点不存在,因为斜率垂直x轴的那个点就是他所说的斜率无穷大的点,这点明显不可取即不在定义域内!
如果你碰到给了函数表达式的题目,可用定义法证明!
如有不懂,hi我
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不一定,导函数可以连续或者震荡。(根据导数的介值定理可以得出,导函数不可能有跳跃间断点、 可去间断点、无穷间断点)例如y=sin(1/x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x=0为什么不在定义域里,分段函数,当x=0时,函数为0,函数在某点可导,则导函数在这点必定连续或者震荡
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |