高中数学 几何难题
2个回答
展开全部
1°
周长一定的封闭曲线中,如果围成的面积最大,则必为凸图形.
若为该图形凹,可任作一条与曲线凹进部分有两个交点的直线,作该曲线在两交点间一段弧的对称曲线,则可得一个与之等周且面积更大的图形.
2°
周长一定的面积最大的封闭曲线中,如果点A、B平分其周长,则弦AB平分其面积.
若AB不平分其面积,则该图形必有在AB某一侧面积较大,如图,不妨设N>M,则去掉M作N的关于AB的对称图形N’,则由N、N’组成的图形周长与原来的相等,但面积更大.
3°对于既平分周长与又平分面积的弦AB,只考虑该图形在AB的任一侧的一半,若C为此段弧上任一点,则∠ACB=90°.否则可把此图形划分为三块M、N、P,只须改变∠ACB的大小,使∠ACB=90°,则M、N的面积不变,而P的面积变大.
这说明,此半段曲线必为半圆,从而另一半也是半圆.
当然这个证明是假定最大值存在。
如果去掉这个假设
初等数学无能为力了。。。
周长一定的封闭曲线中,如果围成的面积最大,则必为凸图形.
若为该图形凹,可任作一条与曲线凹进部分有两个交点的直线,作该曲线在两交点间一段弧的对称曲线,则可得一个与之等周且面积更大的图形.
2°
周长一定的面积最大的封闭曲线中,如果点A、B平分其周长,则弦AB平分其面积.
若AB不平分其面积,则该图形必有在AB某一侧面积较大,如图,不妨设N>M,则去掉M作N的关于AB的对称图形N’,则由N、N’组成的图形周长与原来的相等,但面积更大.
3°对于既平分周长与又平分面积的弦AB,只考虑该图形在AB的任一侧的一半,若C为此段弧上任一点,则∠ACB=90°.否则可把此图形划分为三块M、N、P,只须改变∠ACB的大小,使∠ACB=90°,则M、N的面积不变,而P的面积变大.
这说明,此半段曲线必为半圆,从而另一半也是半圆.
当然这个证明是假定最大值存在。
如果去掉这个假设
初等数学无能为力了。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询