(1/1×3)+(1/3×5)+(1/5×7)+……+(1/2005×2007))
1个回答
展开全部
∵1/[n(n+2)]=(1/2)[1/n-1/(n+2)]
∴1/(1×3)+1/(3×5)+1/(5×7)+…+1/(2005×2007)
=(1/2)(1/1-1/3)+(1/2)(1/3-1/5)+(1/2)(1/5-1/7)+…+(1/2)(1/2005-1/2007)
=(1/2)[1/1+(-1/3+1/3)+(-1/5+1/5)+…+(-1/2005+1/2005)-1/2007)]
=(1/2)(1/1-1/2007)
=(1/2)(2006/2007)
=1003/2007
∴1/(1×3)+1/(3×5)+1/(5×7)+…+1/(2005×2007)
=(1/2)(1/1-1/3)+(1/2)(1/3-1/5)+(1/2)(1/5-1/7)+…+(1/2)(1/2005-1/2007)
=(1/2)[1/1+(-1/3+1/3)+(-1/5+1/5)+…+(-1/2005+1/2005)-1/2007)]
=(1/2)(1/1-1/2007)
=(1/2)(2006/2007)
=1003/2007
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询