设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.证明:在(a,b)内至少存在一点c,使f'(c)+df(c)=0这

d为任意实数。... d为任意实数。 展开
吧贴诳猪骑
推荐于2016-12-01
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
设g(x)=f(x)e^(dx),
由题意得g(x)在(a,b)上可导,[a,b]内连续,
又g(a)=f(a)e^(da)=0
g(b)=f(b)e^(da)=0
即g(a)=g(b)
对g(x)在[a,b]区间应用罗尔定理,
至少存在一点c,使得
g'(c)=0
即f'(c)e^(dc)+df(c)e^(dc)=0
对上式左右除以e^(dc)可得
原命题得证。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式